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1. Introduction

* Instance-level Scene Understanding is crucial in computer vision to support modern
Advanced Driver Assistance Systems

* Abundant annotated training data is required to tackle this task.

* Instance-level annotation is costly due to significant manual effort required.
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1. Introduction

Contribution:

* Introduced InstSynth for enhancing scene understanding with a novel data synthesis
approach

* Constructed IS-Cityscapes - an instance-level synthesized dataset

 Significantly outperformed state-of-the-art models Fastinst and OneFormer on the
Cityscapes benchmark, achieving increases in AP of 14.49% and 11.59%, respectively.
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2. Related work

* Urban Scene Understanding research: gaining attention within the community due to
its wide range of potential applications.

* Instance segmentation models: one-stage approach or two-stage approach.

* Conditional Image Generation models: Diffusion-based models demonstrate
outstanding capabilities in generating and editing diverse and high-quality images guided
by text prompts.

* Data Augmentation: using traditional augmentation techniques or using deep learning-
based augmentation techniques.

e Urban Scene Datasets: Cityscapes, CamVid, Mapillary are among the potential high-
resolution urban scene datasets featuring fine-grained annotations.
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3. Method

InstSynth has 2 main components: P> Prompt-guided Masked Conditional Instance Synthesis

P Instance-wise Urban Segmenter
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Overview of our InstSynth framework.

InstSynth makes use of existing annotated data to boost the performance of the instance
segmentation model
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3. Method

Prompt-guided Masked Conditional Instance Synthesis: generates realistic urban images in
three phases using the Cityscape dataset, ensuring adherence to dataset regulations and
reliability standards.

* Phase 1: Select and crop top-K
. prominent instances from mask

Prompt-guided Masked Conditional Instance Svnthesis I .
annotations.

* Phase 2: Use pre-trained
generation models (GLIGEN,
DiffInpainting, BlendedDiff).

* Phase 3: Integrate the inpainted

images back into the original
Focus: Prompt-guided Mask Confitional Instance Synthesis module ima ges usin g our al gorithm




QDP@2024

3. Method

Instance-wise Urban Segmenter: Fastinst and OneFormer are employed to perform
instance-wise urban scene understanding tasks.
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Focus: Instance-wise Urban Segmenter
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4. Experiments

e OQOur InstSynth with BlendedDiff helps Fastinst and OneFormer enhance their
performance, improving AP scores from 35.5% and 21.75% to 36.52% and 38.93%,
respectively, on CityScapes.

Method Backbone Crop size AP T S Method Backbone Generation Base AP APS0

CMT-DeepLabi [29] MaX-St 29) 1025 x 2049 - Mask2Formert f19] ~RSO-FPN-D3 - 31.40 55.00
Axial-DeepLab-L% ’»ai Axial ResNet-Lt 1025 x 2049 35.80

Axial-DeepLab-XL{ J30]  Axial ResNet-XL{ B0) 1025 x 2049 36.70 = R50-FPN-D3t - 59.00
Panoptic-DeepLabi [ SWideRNett [32) 1025 x 2049 40.10 - RSO-FPN-D3* - 2493 45.69

. . Fastlnst f_xj RS0-FPN-D3** . 27.65 49.21
360 x 720 21.75 40.94

360 x 720 25.68 45.90 GLIGEN il— . 3488
T RSO-FPN-D3**  Difflnpainting 36.44 62.06

n 360 x T: 38.46 64.73 T 2 < e

‘ anda 6 I3

GLIGEN § 360 x T: 3567 61.09 Pahiris &=

— - t denotes the published results of 5]
DiffInpainting [ﬁ) :::: : : 35.40 60.50 « denotes our reproduced results n??mllml Il/(" ('I‘JP ) .
=+ denotes our reproduced results of Fastinst w/o CLIF, and w/ customized image sizes

Mapillary-ConvNext-L 38.93 64.91 The first, second, and thind best results are marked in red, blue, and . respectively
Swin-L 360 x 720 35.75 61.01

ALl of our reproduced results of OneFormer are w/o CLIP, and w/ smaller crop size

The first, second, and third best results are marked in red, blue, and , respectively.

Mapillary-ConvNext-L
Swin-L

Original

2 Mapillary-ConvNext-L
OneFormer [Pj Swin-L

Mapillary-ConvNext-L
Swin-L

BlendedDiff [22}

Tab. State-of-the-art comparison on CityScapes. Left: Comparison on OneFormer. Right: Comparison on Fastinst




4. Experiments — Ablation Study
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* BlendedDiff demonstrates its empowerfulness when it yields the highest performance

over all four mentioned metrics.

A,
||l""1r“"‘ha :
: |=||r N

Visualization results on CityScapes val-set with our Fastinst R50-
FPN-D3. The confidence threshold is 0.8

Method CLIPScore + FID | SSIM 1t PSNR 1
GLIGEN |4 0.79 125.51 0.67 14.39
DiffInpainting [21] 0.81 11533 0.72 15.95
BlendedDiff |2 0.87  93.43 0.90 25.23

The besr results are marked in bold.

Tab. Ablation study on different image generation models

B

Prompt Referenced

Instance Mask GLIGEN Difflnpainting BlendedDiff
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Exemplary instance image generation from three different models of
GLIGEN, Difflnpainting, and BlendedDiff
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5. Conclusion

In this work:

* We proposed InstSynth — a novel instance-wise prompt-guided synthetic data approach
for instance-wise scene understanding.

* We constructed IS-CityScapes — a synthesized dataset that increase four times the
number of instances to over 200K for training

* Experimental results proves our SOTA results on CityScapes

In the future:

* Improve the ability of our instance generation method to deal with various diversity to
solve real-world intense situations while driving.
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