

M A P R 2024

THE 7TH INTERNATIONAL CONFERENCE ON MULTIMEDIA ANALYSIS AND PATTERN RECOGNITION

InstSynth: Instance-wise Prompt-guided Style Masked Conditional Data Synthesis for Scene Understanding

Thanh-Danh Nguyen^{1,2}, Bich-Nga Pham^{1,2}, Trong-Tai Dam Vu^{1,2}, Vinh-Tiep Nguyen^{†1,2}, Thanh Duc Ngo^{1,2} and Tam V. Nguyen³

¹University of Information Technology, Ho Chi Minh City, Vietnam, ²Vietnam National University, Ho Chi Minh City, Vietnam,

³University of Dayton, Dayton, OH 45469, United States {danhnt, ngaptb, taidvt, tiepnv, thanhnd}@uit.edu.vn, tamnguyen@udayton.edu, †corresponding author

Content

- 1. Introduction
- 2. Related work
- 3. Our proposed InstSynth
 - Prompt-guided Masked Conditional Instance Synthesis (ProMCIS)
 - Instance-wise Urban Segmenter
- 4. Experiments
- 5. Conclusion

1. Introduction

- Instance-level Scene Understanding is crucial in computer vision to support modern Advanced Driver Assistance Systems
- Abundant annotated training data is required to tackle this task.
- Instance-level annotation is costly due to significant manual effort required.

1. Introduction

Contribution:

- Introduced InstSynth for enhancing scene understanding with a novel data synthesis approach
- Constructed IS-Cityscapes an instance-level synthesized dataset
- Significantly outperformed state-of-the-art models FastInst and OneFormer on the Cityscapes benchmark, achieving increases in AP of 14.49% and 11.59%, respectively.

2. Related work

- **Urban Scene Understanding research:** gaining attention within the community due to its wide range of potential applications.
- Instance segmentation models: one-stage approach or two-stage approach.
- Conditional Image Generation models: Diffusion-based models demonstrate
 outstanding capabilities in generating and editing diverse and high-quality images guided
 by text prompts.
- **Data Augmentation:** using traditional augmentation techniques or using deep learning-based augmentation techniques.
- **Urban Scene Datasets:** Cityscapes, CamVid, Mapillary are among the potential high-resolution urban scene datasets featuring fine-grained annotations.

3. Method

InstSynth has 2 main components: Prompt-guided Masked Conditional Instance Synthesis

► Instance-wise Urban Segmenter

Overview of our InstSynth framework.

InstSynth makes use of existing annotated data to boost the performance of the instance segmentation model

3. Method

Prompt-guided Masked Conditional Instance Synthesis: generates realistic urban images in three phases using the Cityscape dataset, ensuring adherence to dataset regulations and reliability standards.

Focus: Prompt-guided Mask Confitional Instance Synthesis module

- Phase 1: Select and crop top-K prominent instances from mask annotations.
- Phase 2: Use pre-trained generation models (GLIGEN, DiffInpainting, BlendedDiff).
- Phase 3: Integrate the inpainted images back into the original images using our algorithm.

3. Method

Instance-wise Urban Segmenter: FastInst and OneFormer are employed to perform instance-wise urban scene understanding tasks.

 The instance urban segmenter trains on annotated data from real and augmented images.

Focus: Instance-wise Urban Segmenter

4. Experiments

Our InstSynth with BlendedDiff helps FastInst and OneFormer enhance their performance, improving AP scores from 35.5% and 21.75% to 36.52% and 38.93%, respectively, on CityScapes.

Method	Backbone	Version	Crop size	PQ ↑	IoU ↑	AP ↑	AP50
CMT-DeepLab‡ [29]	MaX-S† [29]		1025×2049	64.60	81.40	-	-
Axial-DeepLab-L‡ [30]	Axial ResNet-L† [30]		1025×2049	63.90	81.00	35.80	
Axial-DeepLab-XL‡ [30]	Axial ResNet-XL† [30]	2	1025×2049	64.40	80.60	36.70	-
Panoptic-DeepLab‡ [31]	SWideRNet† [32]	*	1025×2049	66.40	82.20	40.10	-
OneFormer [9]	Mapillary-ConvNext-L	Original	360×720	48.84	72.58	21.75	40.94
	Swin-L		360×720	51.52	74.53	25.68	45.90
	Mapillary-ConvNext-L	GLIGEN [4]	360×720	62.90	80.55	38.46	64.73
	Swin-L		360×720	60.33	79.18	35.67	61.09
	Mapillary-ConvNext-L	DiffInpainting [21]	360×720	62.90	80.96	38.66	64.69
	Swin-L		360×720	60.13	77.88	35.40	60.50
	Mapillary-ConvNext-L	BlendedDiff [22]	360×720	63.33	80.88	38.93	64.91
	Swin-L		360×720	60.47	79.10	35.75	61.01

ALl of our reproduced results of OneFormer are w/o CLIP, and w/ smaller crop size The first, second, and third best results are marked in red, blue, and green, respectively.

Method	Backbone	Generation Base	AP	AP50
Mask2Former† [19]	R50-FPN-D3†	•	31.40	55.90
FastInst 8	R50-FPN-D3†		35.50	59.00
	R50-FPN-D3*		24.93	45.69
	R50-FPN-D3**		27.65	49.21
	And a second all a first and a second and a second	GLIGEN [4]	34.88	59.20
	R50-FPN-D3**	DiffInpainting [21]	36.44	62.06
		BlendedDiff [22]	36.52	62.21

^{*} denotes our reproduced results of FastInst w/o CLIP

^{**} denotes our reproduced results of FastInst w/o CLIP, and w/ customized image sizes The first, second, and third best results are marked in red, blue, and green, respectively.

4. Experiments – Ablation Study

• **BlendedDiff** demonstrates its empowerfulness when it yields the highest performance over all four mentioned metrics.

Visualization results on CityScapes val-set with our FastInst R50-FPN-D3. The confidence threshold is 0.8

Method	CLIPScore ↑	FID \downarrow	SSIM ↑	PSNR ↑
GLIGEN [4]	0.79	125.51	0.67	14.39
DiffInpainting [21]	0.81	115.33	0.72	15.95
BlendedDiff [22]	0.87	93.43	0.90	25.23

The best results are marked in bold.

Tab. Ablation study on different image generation models

Exemplary instance image generation from three different models of GLIGEN, DiffInpainting, and BlendedDiff

5. Conclusion

In this work:

- We proposed InstSynth a novel instance-wise prompt-guided synthetic data approach for instance-wise scene understanding.
- We constructed IS-CityScapes a synthesized dataset that increase four times the number of instances to over 200K for training
- Experimental results proves our SOTA results on CityScapes

In the future:

• Improve the ability of our instance generation method to deal with various diversity to solve real-world intense situations while driving.

InstSynth: Instance-wise Prompt-guided Style Masked

Conditional Data Synthesis for Scene Understanding

Thanh-Danh Nguyen^{1,2}, Bich-Nga Pham^{1,2}, Trong-Tai Dam Vu^{1,2}, Vinh-Tiep Nguyen^{†1,2}, Thanh Duc Ngo^{1,2} and Tam V. Nguyen³

¹University of Information Technology, Ho Chi Minh City, Vietnam, ²Vietnam National University, Ho Chi Minh City, Vietnam,

³University of Dayton, Dayton, OH 45469, United States {danhnt, ngaptb, taidvt, tiepnv, thanhnd}@uit.edu.vn, tamnguyen@udayton.edu, †corresponding author

Acknowledgements

